

EQSX-CVR

40Gbps QSFP+ to 10G SFP+ Converter

PRODUCT FEATURES

- Trouble-free installation and network bring-up
- ➤ Compliant to industry standards: SFF-8665/ SFF-8432
- Precision process control for minimization of pair-to-pair skew
- > 1 independent duplex channels operating at 25Gbps and 10Gbps
- Good EMI performance
- > 100ohm differential impedance system
- ➤ Operating case temperature: -40 to 85°C
- > Low insertion loss, Low crosstalk
- > RoHS compliant

APPLICATIONS

- Low EMI radiation Switches, servers and routers
- > Telecommunication and wireless infrastructure
- Test and measurement equipment
- Networked storage systems
- Data Center networks
- Storage area networks

DESCRIPTIONS

The QSFP form factor to SFP form factor Adapter (QTSA) Module offers 25Gigabit or 10 Gigabit Ethernet connectivity for Quad Small Form-Factor Pluggable (QSFP)-only platforms. It allows smooth and cost-effective migration to 100 Gigabit Ethernet or 40 Gigabit Ethernet by providing an option to use lower-speed Small Form-Factor Pluggable (SFP) or Enhanced Small Form-Factor Pluggable (SFP+) modules in empty QSFP ports or when the other end of the network is running at lower speeds.

Ordering Information

Part No.	Description
EQSX-CVR	40Gbps QSFP+ to 10G SFP+ Converter

A list of SFP+ or SFP28 transceiver modules that can be plugged into the QTSA module is provided in Table 1.

Item	Product name	Product description
1	SFP+ SR	SFP+ SR Module for Multimode Fiber
2	SFP+ LR	SFP+ LR Module for Single-Mode Fiber
3	SFP28 SR	25GBASE-SR SFP28 Module for Multimode Fiber
4	SFP28 LR	25GBASE-LR SFP28 Module for Single-Mode Fiber
5	AOC	SFP28 and SFP+ AOC Optical Cables
6	DAC	SFP28 and SFP+ Copper Cables (1-m to 5-m lengths)

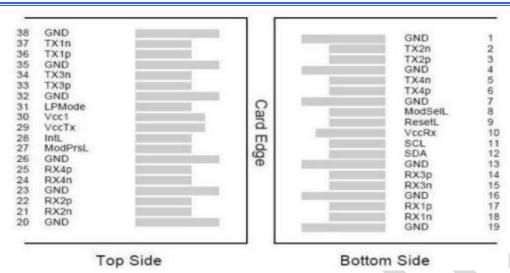
Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Ts	-40	85	。C
Case Operating Temperature	Тор	0	70	。C
Relative Humidity (non-condensation)	RH	5	95	%
Supply Voltage	Vcc	-0.5	3.6	V

|--|

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Case Temperature	Тор	0	70	。C
Relative Humidity(non- condensation)	RH	5	85	%
Power Supply Voltage	Vcc	3.135	3.465	V


Electrical Characteristics

Parameter	Symbol	Min	Max	Unit
Host 2-wire Vcc voltage	Vcc_Host_2 w	3.14	3.46	V
	VOL	0.0	0.40	V
	VOH	Vcc_Host 2w -	Vcc_Host_2w + 0.3	V
SCL and SDA Voltage[1]		0.5		
	VIL	-0.3	VccT*0.3	V
	VIH	VccT*0.7	VccT+0.5	V
Input current on the SCL and SDA contacts	II	-10	10	mA

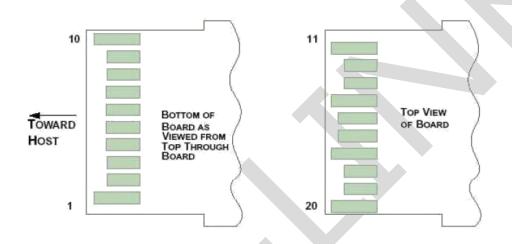
Pin Diagram

QSFP+ Transceiver Pad Layout, host PCB QSFP+ Pinout, and PIN Descriptions are as follows:

QSFP+ Transceiver Electrical Pad Pinout

Pin Definitions

Pin#	Name	Logic	Description	Power Seq.	Note
1	GND		Ground	1st	1
2	Tx2n	CML-I	Transmitter Inverted Data Input	3rd	
3	Tx2p	CML-I	Transmitter Non-Inverted Data output	3rd	
4	GND		Ground	1st	1
5	Tx4n	CML-I	Transmitter Inverted Data Input	3rd	
6	Tx4p	CML-I	Transmitter Non-Inverted Data output	3rd	
7	GND		Ground	1st	1
8	ModSelL	LVTLL-I	Module Select	3rd	
9	ResetL	LVTLL-I	Module Reset	3rd	
10	VccRx		+3.3V Power Supply Receiver	2nd	2
11	SCL	LVCMOS- I/O	2-Wire Serial Interface Clock	3rd	
12	SDA	LVCMOS- I/O	2-Wire Serial Interface Data	3rd	
13	GND		Ground	1st	1


14	Rx3p	CML-O	Receiver Non-Inverted Data Output	3rd	
15	Rx3n	CML-O	Receiver Inverted Data Output	3rd	
16	GND		Ground	1st	1
17	Rx1p	CML-O	Receiver Non-Inverted Data Output	3rd	
18	Rx1n	CML-O	Receiver Inverted Data Output	3rd	
19	GND		Ground	1st	1
20	GND		Ground	1st	1
21	Rx2n	CML-O	Receiver Inverted Data Output	3rd	
22	Rx2p	CML-O	Receiver Non-Inverted Data Output	3rd	
23	GND		Ground	1st	1
24	Rx4n	CML-O	Receiver Inverted Data Output	3rd	
25	Rx4p	CML-O	Receiver Non-Inverted Data Output	3rd	
26	GND		Ground	1st	1
27	ModPrsL	LVTTL-O	Module Present	3rd	
28	IntL	LVTTL-O	Interrupt	3rd	
29	VccTx		+3.3 V Power Supply transmitter	2nd	2
30	Vcc1		+3.3 V Power Supply	2nd	2
31	LPMode	LVTTL-I	Low Power Mode	3rd	
32	GND		Ground	1st	1
33	Тх3р	CML-I	Transmitter Non-Inverted Data Input	3rd	
34	Tx3n	CML-I	Transmitter Inverted Data Output	3rd	
35	GND		Ground	1st	1
36	Tx1p	CML-I	Transmitter Non-Inverted Data Input	3rd	
37	Tx1n	CML-I	Transmitter Inverted Data Output	3rd	

Notes:

- 1. GND is the symbol for signal and supply (power) common for the QSFP+ module. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Vcc Rx, Vcc1and Vcc Tx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500 mA.

SFP28 Host board Connector Pinout

Pin Definitions

Pin	Logic	Symbol	Name/Description	Note
1		VeeT	Module Transmitter Ground	1
2	LVTTL-O	Tx_Fault	Transmitter Fault	2
3	LVTTL-I	Tx_Disable	Transmitter Disable	3
4	LVTTL-I/O	SDA	MOD-DEF2 2-wire serial interface data line	4
5	LVTTL-I/O	SCL	MOD-DEF1 2-wire serial interface clock line	4
6		Mod_Abs	Module Absent	5
7	LVTTL-I	RS0	Rate Select Zero	
8	LVTTL- O	Rx_LOS	Module Receiver Loss of Signal	2
9	LVTTL-I	RS1	Rate Select One	
10		VeeR	Module Receiver Ground	1
11		VeeR	Module Receiver Ground	1
12	CML-O	RD-	Receiver Inverted Data Output	
13	CML-O	RD+	Receiver Non-Inverted Data Output	
14		VeeR	Module Receiver Ground	1
15		VccR	Module Receiver 3.3V Supply	

16		VccT	Module Transmitter 3.3V Supply	
17		VeeT	Module Transmitter Ground	1
18	CML-I	TD+	Transmitter Non-Inverted Data Input	
19	CML-I	TD-	Transmitter Inverted Data Input	
20		VeeT	Module Transmitter Ground	1

Notes:

- 1. The module signal grounds, VeeR and VeeT, shall be isolated from the module case.
- 2. This is an open collector/drain output and shall be pulled up with 4.7-10k to Vcc_Host on the host board. Pull ups can be connected to multiple power supplies, however the host board design shall ensure that no module has voltage exceeding module VccT/R + 0.5 V.
- 3. This is an open collector/drain input and shall be pulled up with 4.7-10k to VccT in the module.
- 4. See 2-wire electrical specifications.
- 5. 5. This shall be pulled up with 4.7-10k to Vcc_Host on the host board

Recommended Interface Circuit

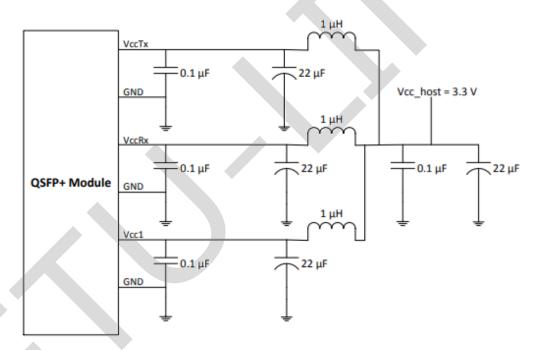
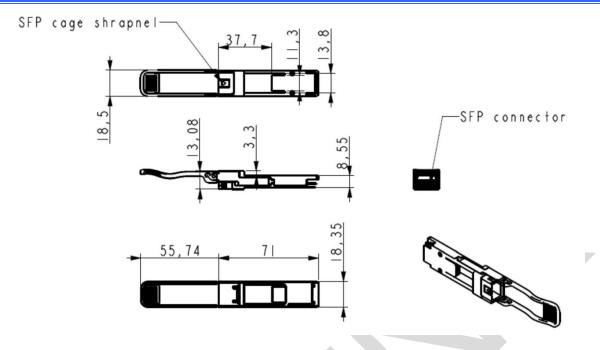



FIGURE 5-4 RECOMMENDED HOST BOARD POWER SUPPLY FILTERING

Mechanical Diagram

Figure shows the package dimensions of the module. The module is designed to be complaint with QSFP+ MSA specification. Package dimensions are specified in SFF-8436.

Revision History

Version No.	Date	Description
1.0	February 18, 2019	Preliminary datasheet
2.0	July 15,2024	Format change

Company: ETU-Link Technology Co., LTD

Production base: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street,

Longhua District, Shenzhen city, GuangDongProvince, China 518109

R&D base: Floor 4, Building 4, Nanshan Yungu Phase LI, Taoyuan Community, XiliStreet, Nanshan District,

Shenzhen

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com.

Please e-mail us at sales@etulinktechnology.com or call us for assistance.