

1

Optical Communication System

F© (E 🗵 🕑

ECSB4312-3LCD10/ECSB3412-3LCD10

1.25Gb/s Compact SFP 10km Optical Transceiver Module

- ➢ Up to 1.25Gb/s data links
- > 1490nm DFB laser transmitter and PIN photo-detector
- > Achieve operational compatibility with conventional SFP
- Up to 10km on 9/125µm SMF

SFP

- Hot-pluggable CSFP footprint
- > BIDI LC/UPC type pluggable optical interface
- Low power dissipation
- RoHS-10 compliant and lead-free
- > Support Digital Diagnostic Monitoring interface
- Single +3.3V power supply
- ➢ Compliant with SFF-8472
- > Metal enclosure, for lower EMI
- > Meet ESD requirements, resist 8KV direct contact voltage
- Case operating temperature
- Commercial: 0 ~ +70oC
- ➢ Extended: -10 ~ +80oC
- ➢ Industrial: -40 ~ +85oC

Applications

- Switch to Switch Interface
- Gigabit Ethernet
- Point to Point FTTH Application
- Switched Backplane Applications
- Router/Server Interface
- Other Optical Links

Part Number Ordering Information

Part Number	Data Rate (Gb/s)	Wavelength (nm)	Transmission Distance(km)	Temperature (oC) (Operating Case)
ECSB4312-3LCD10	1.25	1490Tx/1310nmRx	10km SMF	0~70 commercial
ECSB4312-3LED10	1.25	1490Tx/1310nmRx	10km SMF	-10~80 Extended
ECSB4312-3LID10	1.25	1490Tx/1310nmRx	10km SMF	-40~85 Industrial

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Мах	Unit	Notes
Storage Temperature	TS	-40	85	oC	
Power Supply Voltage	VCC	-0.3	3.6	V	
Relative Humidity					
(non-condensation)	RH	5	95	%	
Damage Threshold	THd	5		dBm	

Recommended Operating Conditions and Power

Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit	Notes
		0		70		commercial
Operating Case	TOP	-10		80	оС	extended
Temperature		-40		85		industrial
Power Supply Voltage	VCC	3.135	3.3	3.465	V	
Data Rate			1.25		Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (SMF)	D			20	km	9/125um

General Description

ECSB4312-3LCD10 Small Form Factor Pluggable (CSFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA), The transceiver consists of 2-channel Bi-directional Optical Transceiver unit with five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the DFB laser and the PIN photo-detector .The module data link up to 10km in 9/125um single mode fiber.

The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.

Conventional SFP will function when plugged into a C-SFP socket, at the same time no damage to C-SFP and host board if C-SFP module is plugged into a conventional SFP socket

Pin Assignment and Pin Description

Figure1. Diagram of host board connector block pin numbers and names

PIN	Name	Name/Description	Notes					
1	VEE	Transmitter Ground	VEE may be internally connecte within the SFP module					
2	TX FAULT	Transmitter Fault.	TX Fault is an open collector/dra output, which should be pulled with a 4.7K–10K resistor on the ho board. Note 1 for more information					
3	TX1_Disable	Transmitter Disable of Ch A	Module channel A disables function					
4	MOD_DEF2	Two-wires interface Data	2 wire serial ID interface, SDA					
5	MOD_DEF1	Two-wires interface Clock	2 wire serial ID interface, SCL					
6	TD2-	Inverted Transmit Data Input of Ch B	These are the differential transmitter puts. They are					
7	TD2+	Transmit Data Input of Ch B	AC-coupled, differential lines with 100 differential termination inside the module. The AC coupling is done inside the module and is thus					

				not required on the host board		
	8	LOS1	Loss of Signal of Ch A	Loss of Signal detected function. Note 2 for more information.		
	9	RD2+	Received Data Output of Ch B	These are the differential receiver outputs. They are AC coupled 100		
	10	RD2-	Inverted Received Data Output of Ch B	differential lines which should be terminated with 100(differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.		
	11	VEE	Transceiver Ground	VEE may be internally connected within the SFP module.		
	12	RD1-	Inverted Received Data Output of Ch A	These are the differential receiver outputs. They are AC coupled 100		
	13	RD1+	Received Data Output of Ch A	differential lines which should be terminated with 100(differential) a the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.		
	14	LOS2	Loss of Signal of CH B	Loss of Signal detected function. Note 2 for more information.		
-	15	VCCR	Receiver Power	$3.3V \pm 5\%$. Note 3 for more information		
-	16	VCCT	Transmitter Power	$3.3V \pm 5\%$. Note 3 for more information		
	17	TX2_Disable	Transmitter Disable of Ch B	Module channel B disables function		
	18	TD1+	Transmit Data Input of Ch A	These are the differential transmitter puts. They are		
	19	TD1-	Inverted Transmit Data Input of Ch A	AC-coupled differential lines with 100 differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board		
	20	VEE	Transceiver Ground	VEE may be internally connected within the SFP module.		

Notes:

1. When high, output indicates a laser fault of some kind either in Channel A or Channel B. The Host shall read

Channel A/B for details: TX Fault from channel A if bit 2 is set in [A2H:110]; TX Fault from channel B if bit 2 is set in [B2H: 110]. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

2. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.4V.

3. VccT VccR are the power supplies. They are defined as $3.3V \pm 5\%$ at the SFP connector pin. Maximum supply current is 400Ma@3.3V. Vcc may be internally connected within the SFP transceiver module.

Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Typical	Max	Unit	Notes
Power Consumption				1.32	W	
Supply Current	lcc			400	mA	
Transmitter						
Single-ended Input Voltage Tolerance		-0.3		4.0	V	
Differential Input Voltage Swing	Vin,pp	200		2400	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	
Transmit Disable Assert Time				5	us	
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V	
Transmit Enable Voltage	Ven	Vee-0.3		0.8	V	
		Receiver				
Differential Output Voltage Swing	Vout,pp	500		900	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	
Data output rise/fall time	Tr/Tf		100		ps	20% to 80%

LOS Assert Voltage	VlosH	Vcc-1.3	Vcc	V	
LOS De-assert Voltage	VlosL	Vee-0.3	0.8	V	

Optical Characteristics

Parameter	Symbol	Min.	Typical	Max	Unit	Notes	
	Tra	nsmitter			•		
Center Wavelength	λC	1470	1490	1510	nm		
Spectrum Bandwidth(RMS)	σ			1	nm		
Side Mode Suppression Ratio	SMSR	30			dB		
Average Optical Power	PAVG	-9		-3	dBm	1	
Optical Extinction Ratio	ER	9			dB		
Transmitter OFF Output Power	POff			-45	dBm		
Transmitter Eye Mask		Compliant with 802.3z(class 1 laser 2 safety)					
	Re	eceiver					
Center Wavelength	λC	1260	1310	1360	nm		
Receiver Sensitivity (Average Power)	Sen.			-20	dBm	3	
Input Saturation Power (overload)	Psat	-3			dBm		
LOS Assert	LOSA	-36			dB	4	
LOS De-assert	LOSD			-21	dBm	4	
LOS Hysteresis	LOSH	0.5	2	6	dBm		

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Notes:

1. Measure at 2^7-1 NRZ PRBS pattern

2. Transmitter eye mask definition.

3. Measured with Light source 1490nm, ER=9dB; BER =<10^-12 @PRBS=2^7-1 NRZ

4. When LOS de-asserted, the RX data+/- output is High-level (fixed).

7

Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales staff.

Parameter	Symbol	Min.	Мах	Unit	Notes
Temperature monitor absolute error	DMI_ Temp	-3	3	degC	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-0.1 5	0.15	V	Full operating range
RX power monitor absolute error	DMI_RX	-3	3	dB	
Bias current monitor	DMI_ bias	-10 %	10%	mA	
TX power monitor absolute error	DMI_TX	-3	3	dB	

Mechanical Dimensions

Precautions

a. This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is

highly recommended. Follow guidelines according to proper ESD procedures.

b. Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Ourmodules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

ETU-Link provides two kinds of packaging, 10pcs/Tray and individual package.

Company: ETU-Link Technology Co., LTD Address: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street, Longhua District, Shenzhen city, GuangDongProvince,China 518109 Tel: +86-755 2328 4603

Address and phone number also have been listed at www.etulinktechnology.com Please e-mail us at sales@etulinktechnology.com or call us for assistance.

Fiber Optic Transceivers Copyright 2011—2017 etulinktechnology.com. All Rights Reserved