

F© (€ 🗵

1

ECxx10X-3LCD10

CFP 4*25G 1310nm 10KM SUPPORT 100GE&OUT4

- Compliant with 100GBASE-LR4
- Support line rates from 103.125 Gbps to 111.81 Gbps
- Integrated LAN WDM TOSA / ROSA for up to 10 km reach over SMF
- CAUI(10x10G) Electrical Interface and 4-lane 25.78Gb/s optical interface
- Duplex LC optical receptacle
- > MDIO Interface for module management
- Single 3.3 V power supply
- Case operating temperature range:0°C to 70°C
- Power dissipation < 12W</p>

Applications

- Local Area Network (LAN)
- Data Center
- > Ethernet switches and router applications

Standard

- Compliant to IEEE 802.3ba
- Compliant to CFP MSA Hardware Specification
- > Compliant to CFP MSA Management Interface Specificatio

Description

The ETU-LINK CFP LR4 is the optical transceiver module which is a hot pluggable form factor designed for high speed optical networking application. The ETU-LINK CFP LR4 is designed for 100 Gigabit Ethernet application and provides 100GBASE-LR4 compliant optical interface, CAUI electrical interface and MDIO module management interface. The ETU-LINK CFP LR4 converts 10-lane 10.3Gb/s electrical data streams to 4-lane LAN-WDM 25.78Gb/s optical output signal and 4-lane LAN-WDM 25.78Gb/s optical input signal to 10-lane 10.3Gb/s electrical data streams. This 10-lane 10.3Gb/s electrical signal is fully compliant with IEEE 802.3ba CAUI specification. The high performance Cooled LAN-WDM EA-DFB transmitter and high sensitivity PIN receiver provide superior performance for 100Gigabit Ethernet applications up to 10km links and compliant optical interface with IEEE802.3ba 100GBASE-LR4 requirements.

The ETU-LINK CFP LR4 contains a duplex LC connector for the optical interface and a 148-pin connector for the electrical interface. Figure 1 shows the functional block diagram of ETU-LINK CFP LR4.

Figure 1. CFP LR4 Optical Transceiver functional block diagram

Transmitter

The transceiver module receives 10-lane 10.3 Gb/s CAUI electrical inputs. The gearbox multiplexes 10-lane electrical signals to 4-lane electrical signals. The multiplexed 4-lane signals are fed to the transmitters. The four transmitters convert 4-lane signals to an optical signal through 4 Laser drivers and Lasers diodes which are packaged in the Transmitter Optical Sub-Assembly (TOSA). Each Laser launches optical signal in specific wavelength specified in IEEE802.3ba 100GBASE-LR4 requirements. These 4-lane optical signals will be optically multiplexed into one fiber by 4 to1 Optical WDM MUX which is in the TOSA. The optical output power is held constant by an automatic power control (APC) circuit. The transmitters output can be turned off by TX_DIS hardware signal and/or through MDIO module management Interface.

Receiver

The ETU-LINK CFP LR4 receives 4-lane LAN WDM optical signals. The optical signals are de-multiplexed by 1 to 4 optical DE-MUX and fed into each Receiver Optical Sub-Assembly (ROSA) integrated 1:4 optical DE-MUX. The ROSA converts optical signal to electrical signal. The 4-lane regenerated electrical signals are de-multiplex to 10-lane signals by the 4 to 10 gearbox. The 10-lane signals are compliant with IEEE CAUI interface requirements. Each received optical signal is monitored by the DOM section. The monitored value is reported through the MDIO section. If one or more received optical signal is weaker than the threshold level, RX_LOS hardware alarm will be launched.

CFP Pin Map Orientation

	(2nd Half)	-	Bottom Row (2nd Half)		Top Row (1st Half)		Bottom Rov (1st Hair)
148	IND	1	3.3V_GND	111	GND	38	MOD_ABS
147 F	REFCLKn	2	3.3V_GND	110	N.C.	39	MOD_RSTn
146 F	REFCLKp	3	3.3V GND	109	N.C.	40	RX_LOS
145 0	IND	4	3.3V GND	108	GND	41	GLB_ALRM
144	LC.	5	3.3V_GND	107	RX9n	42	PRTADR4
143 M	LC.	6	3.3V	106	RXSp	43	PRTADR3
142 0	SND	7	3.3V	105	GND	44	PRTADR2
141 T	X9n	8	3.3V	104	RX8n	45	PRTADR1
140 T	Хэр	9	3.3V	103	RX8p	46	PRTADR0
139 6	SND	10	3.3V	102	GND	47	MDIO
138 T	X8n	11	3.3V	101	RX7n	48	MDC
137 T	X8p	12	3.3V	100	RX7p	49	GND
136 0	SND	13	3.3V	39	GND	50	VND IO F
135 T	X7n	14	3.3V	98	RXSn	51	VND IO G
134 T	Х7р	15	3.3V	97	RX6p	52	GND
133 0	GNID	16	3.3V_GND	96	GND	53	VND_IO_H
132 T	XGn	17	3.3V GND	95	RX(5n	54	VND IO J
131 T	Хер	18	3.3V_GND	94	RX5p	55	S.SV GND
130 0	SND	19	3.3V GND	93	GND	56	3.3V GND
129 T	X5n	20	3.3V GND	92	RX4n	57	S.SV_GND
128 T	XSp	21	VND_IO_A	91	RX4p	58	3.3V GND
127 0	SNID	22	VND IO B	90	GND	59	3.3V GND
126 T	X4n	23	GND	89	RX3n	60	3.3V
125 T	X4p	24	(TX_MCLKn)	88	RX3p	61	3.3V
124 0	SNID	25	(TX MCLKp)	87	GND	62	3.3V
123 T	X3n	26	GND	86	RX2n	63	3.3V
122 T	ХЗр	27	VND_IO_C	85	RX2p	64	3.3V
121 0	IND	28	VND_IO_D	84	GND	65	3.3V
120 T	X2n	29	VND IO E	83	RX1n	66	3.3V
119 T	X2p	30	PRG_CNTL1	82	RX1p	67	3.3V
118	SND	31	PRG_CNTL2	81	GND	68	3.3V
117 T	Xin	32	PRG_CNTL3	80	RXOn	69	3.3V
116 T	X1p	33	PRG_ALRM1	79	RXOp	70	3.3V GND
115	SND	34	PRG ALRM2	78	GND	71	3.3V GND
114 T	X0n	35	PRG_ALRM3	77	(RX_MCLKn)	72	S.SV GND
113 T	XOp	36	TX_DIS	76	(RX_MCLKp)	73	3.3V_GND
112 0	SND	37	MOD LOPWR	75	GND	74	3.3V GND

Figure 2 CFP LR4 optical transceiver pin-out

Table 1 CFP optical transceiver pins

Pin no.	Name	Туре	Description
89	RX3n	HS I/O	Lane 3 Receiver Output (Negative)
90	GND		
91	RX4p	HS I/O	Lane 4 Receiver Output (Positive)
92	RX4n	HS I/O	Lane 4 Receiver Output (Negative)
93	GND		
94	RX5p	HS I/O	Lane 5 Receiver Output (Positive)
95	RX5n	HS I/O	Lane 5 Receiver Output (Negative)
96	GND		
97	RX6p	HS I/O	Lane 6 Receiver Output (Positive)
98	RX6n	HS I/O	Lane 6 Receiver Output (Negative)
99	GND		
100	RX7p	HS I/O	Lane 7 Receiver Output (Positive)
101	RX7n	HS I/O	Lane 7 Receiver Output (Negative)
102	GND		
103	RX8p	HS I/O	Lane 8 Receiver Output (Positive)
104	RX8n	HS I/O	Lane 8 Receiver Output (Negative)
105	GND		
106	RX9p	HS I/O	Lane 9 Receiver Output (Positive)
107	RX9n	HS I/O	Lane 9 Receiver Output (Negative)
108	GND		
109	NC		Not Connected Internally

110	NC		Not Connected Internally
111	GND		
112	GND		
113	TX0p	HS I/O	Lane 0 Transmitter Input (Positive)
114	TX0n	HS I/O	Lane 0 Transmitter Input (Negative)
115	GND		
116	TX1p	HS I/O	Lane 1Transmitter Input (Positive)
117	TX1n	HS I/O	Lane 1 Transmitter Input (Negative)
118	GND		
119	TX2p	HS I/O	Lane 2Transmitter Input (Positive)
120	TX2n	HS I/O	Lane 2 Transmitter Input (Negative)
121	GND		
122	TX3p	HS I/O	Lane 3 Transmitter Input (Positive)

Pin no.	Name	Туре	Description
123	TX3n	HS I/O	Lane 3Transmitter Input (Negative)
124	GND		
125	TX4p	HS I/O	Lane 4 Transmitter Input (Positive)
126	TX4n	HS I/O	Lane 4 Transmitter Input (Negative)
127	GND		
128	ТХ5р	HS I/O	Lane 5 Transmitter Input (Positive)
129	TX5n	HS I/O	Lane 5 Transmitter Input (Negative)
130	GND		
131	ТХ6р	HS I/O	Lane 6 Transmitter Input (Positive)

132	TX6n	HS I/O	Lane 6 Transmitter Input (Negative)
133	GND		
134	TX7p	HS I/O	Lane 7Transmitter Input (Positive)
135	TX7n	HS I/O	Lane 7 Transmitter Input (Negative)
136	GND		
137	TX8p	HS I/O	Lane 8 Transmitter Input (Positive)
138	TX8n	HS I/O	Lane 8Transmitter Input (Negative)
139	GND		
140	ТХ9р	HS I/O	Lane 9 Transmitter Input (Positive)
141	TX9n	HS I/O	Lane 9 Transmitter Input (Negative)
142	GND		
143	NC		Not Connected Internally
144	NC		Not Connected Internally
145	GND		
146	REFCLKp		Reference Clock Input (Positive)
147	REFCLKn		Reference Clock Input (Negative)
148	GND		

I. Absolute Maximum Ratings

Parameter			Symbol	Min.	Тур.	Max.	Unit	Note	
	Storage Tem	perature		Ts	-40	-	85	°C	
	Relative Hur	nidity		RH	5	-	95	%	
	Power Supply	y Voltage		VCC	-0.3	-	4	V	
	Signal Input	Voltage			Vcc-0.3	-	Vcc+0.3	V	
Pdmg			5.5	dBm					

Parameter	Symbol	Min	Тур.	Max	Unit	Notes						
	L											
Supply currents and voltages												
Voltage	Vcc	3.2	3.3	3.4	V	With Respect to GND						
Supply current	Icc			3.6	A							
Power dissipation	Pwr			12.0	W							
Power dissipation (low power mode)	Plp			2.0	W							
Low speed control and sense signals, 3.	3 V LVCMOS	5										
Outputs low voltage	Vol	-0.3		0.2	V							
Output high voltage	Vон	Vcc-0.2		Vcc+0.3	V							
Input low voltage	VIL	-0.3		0.8	V							
Input high voltage	VIH	2		Vcc+ 0.3	V							
Input leakage current	Iin	-10		10	μΑ							
Low speed control and sense signals, 1.2	2 V LVCMOS	5										
Outputs low voltage	Vol	-0.3		0.2	V							
Output high voltage	Vон	1.0		1.5	V							
Input low voltage	VIL	-0.3		0.36	V							
Input high voltage	VIH	0.84		1.5	V							
Input leakage current	Iin	-100		100	μA							

III. MDIO Management Interface

The ETU-LINK CFP LR4 supports the MDIO interface specified in IEEE802.3 Clause 45. This 2-wire management data I/O interface is provided for the module status monitoring and control. The management data clock (MDC) provides clocking for the data that is passed on the MDIO port. Five further pins allow for loading of a port address (PORT_ADDR0-4) into the module. The CFP transceiver supports MDIO pages 8000h NVR 1 Based ID registers, 8080h NVR 2 Extended ID registers, 8100h

NVR 3 network lane specific registers, and pages A000h CFP module VR 1 registers, A080h MLG VR 1 registers, A200h network lane VR 1 registers, A280h network lane VR 2 registers.

Details of the protocol and interface are explicitly described in CFP MSA Management Interface Specification. Please refer to the specifications for design reference.

Starting	Ending						
Addama	A	Access	Allocated	Data Bit	Table Name and Description		
Address	Address	Туре	Size	Width	Table Name and Description		
in Hex	in Hex						
0000	7FFF	N/A	32768	N/A	Reserved for IEEE 802.3 Use.		
8000	807F	RO	128	8	CFP NVR 1. Basic ID registers.		
8080	80FF	RO	128	8	CFP NVR 2. Extended ID registers.		
8100	817F	RO	128	8	CFP NVR 3. Network lane specific registers.		
8180	81FF	RO	128	8	CFP NVR 4.		
8200	83FF	RO	4x128	N/A	MSA Reserved.		
8400	847F	RO	128	8	Vendor NVR 1. Vendor data registers.		
8480	84FF	RO	128	8	Vendor NVR 2. Vendor data registers.		
8500	87FF	RO	6x128	N/A	Reserved by CFP MSA.		
8800	887F	R/W	128	8	User NVR 1. User data registers.		
8880	88FF	R/W	128	8	User NVR 2. User data registers.		
8900	8EFF	RO	12x128	N/A	Reserved by CFP MSA.		
8F00	8FFF	N/A	2x128	N/A	Reserved for User private use		
9000	9FFF	RO	4096	N/A	Reserved for vendor private use.		
A000	A07F	R/W	128	16	CFP Module VR 1. CFP Module level control and DDM registers.		
A080	A0FF	R/W	128	16	MLG VR 1. MLG Management Interface registers		
A100	A1FF	RO	2x128	N/A	Reserved by CFP MSA.		

A200	A27F	R/W	128	16	Network Lane VR 1. Network lane specific registers.		
A280	A2FF	R/W	128	16	Network Lane VR 2. Network lane specific registers.		
A300	A37F	R/W	128	16	Network Lane VR 3. Network Lane n Vendor Specific FAWS Registers		
A380	A3FFF	RO	128	N/A	Reserved by CFP MSA		
A400	A47F	R/W	128	16	Host Lane VR 1. Host lane specific registers.		
A480	ABFF	RO	15x128	N/A	Reserved by CFP MSA.		
AC00	AFFF	R/W	8x128	16	Common Data Block Registers		
B000	BFFF	R/W	32x128	16	Allocated for OIF MSA-100GLH modules		
C000	FFFF	RO	4x4096	N/A	Reserved by CFP MSA.		

11

IV. Optical Transmitter Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Signaling rate, each lane			25.78125		GBd	
		1294.53	1295.56	1296.59	nm	
		1299.02	1300.05	1301.09	nm	
Lane wavelength (range)		1303.54	1304.58	1305.63	nm	
		1308.09	1309.14	1310.19	nm	
Rate tolerance		-100		100	ppm	From nominal rate
Side-mode suppression ratio	SMSR	30			dB	
Total lowesh movies				10.5	dBm	
				10.5		
Average launch power, each lane	Pavg	-4.3		4.5	dBm	

Extinction Ratio	ER	4	8.2		dB	
Optical modulation amplitude, each lane (OMA)	OMA	-1.3		4.5	dBm	
Difference in launch power between any two lanes (OMA)				5	dB	
Transmitter and Dispersion Penalty, each lane	TDP			2.2	dB	
OMA minus TDP, each lane	OMA-TD P	-2.3			dBm	
Average launch power of OFF transmitter, each lane				-30	dBm	
Relative Intensity Noise	RIN20O MA			-130	dB/Hz	
Transmitter reflectance				-12	dB	
Transmitter eye mask {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}				

V. Optical Receiver Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Signaling rate, each lane			25.78125		GBd	
Dete telement		100		100		From
Rate tolerance		-100		100	ppm	rate
Average receive power, each	D	10.6		4.5	ID	
lane	Pavg	-10.6		4.5	dBm	
Receive power, each lane						
(OMA)				4.5	dBm	
Difference in receiver power						
between any two lanes (OMA)				5.5	dB	
× /				I		

1	3

Receiver Sensitivity (OMA),	Rsen			-8.6	dBm	1
each lane						
Stressed Receiver Sensitivity	SRS			-6.8	dBm	
(OMA), each lane						<u> </u>
Stressed receiver sensitivity test	t conditions					
Vertical eye closure penalty,	VECP		1.8		dB	
each lane						
Stressed sys J2 jitter, each	J2		0.3		UI	2
lane						
Stressed sys J9 jitter, each	J9		0.47		UI	2
lane						
Receiver reflectance				-26	dB	
LOS Assert	Plos_on		-18		dBm	
LOS Deassert	Plos_off		-15		dBm	
LOS Hysteresis		0.5			dB	

1. Receiver sensitivity (OMA), each lane, is informative.

2. Vertical eye closure penalty, stressed eye J2 Jitter, and stressed eye J9 Jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

VI. Outline Dimensions

Part Number	Product Description
ECPxx10A-3LCD10	CFP 4*25G 1310NM 10km SUPPORT 100GE&OUT4

1. 100G Ethernet

2. 100G OUT4

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by before they become applicable to any particular order or contract. In accordance with the policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of or others. Further details are available from any sales representative.

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Packaging

ETU-Link provides two kinds of packaging, 10pcs/Tray and individual package.

Company: ETU-Link Technology Co., LTD Address: 4th Floor, C Building, JinBoLong Industrial Park, QingQuan Road, LongHua District, Shenzhen city, GuangDong Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.

Fiber Optic Transceivers Copyright 2011—2017 etulinktechnology.com All Rights Reserved