

OSFP TO QSFP-DD

EOQDDP40X-330CNxx 400Gbps OSFP To QSFPDD Passive High Speed Cable

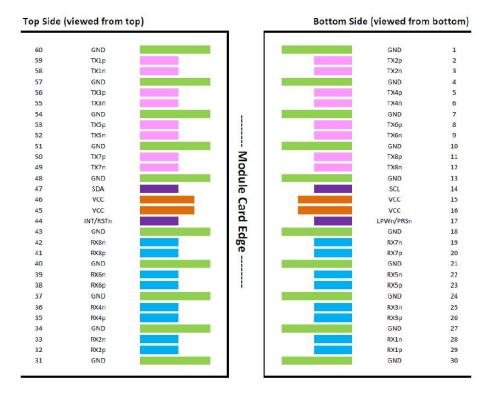
- Products Compliance with CMIS4.0, OSFP_MSA, QSFP DD MSA
- Ethernet-Compliance with IEEE802.3cd
- Support 56G (PAM4) electrical data rates/channel
- Support I2C two line string interface, easy to control
- Support for hot plugging
- Low crosstalk/Low power
- Maximum Link Length: up to 3m
- ROHS Compliance

Applications

- 400G Ethernet
- SWITCH/ Router
- Data storage and communication industry
- Data center, cloud server

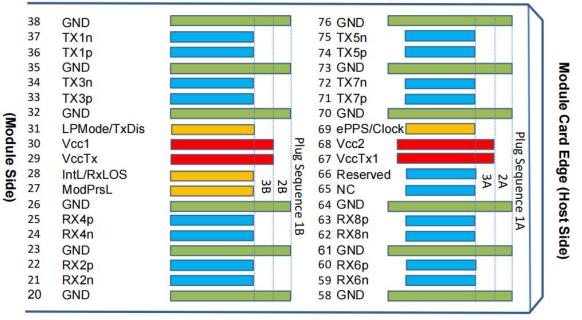
Description

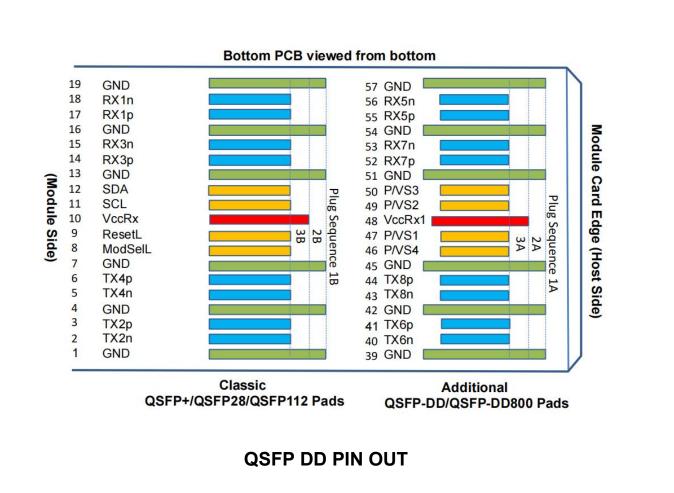
The 400G OSFP56 Passive Direct Attach Copper Twinax Cable is designed for use in 400GBASE Ethernet., OSFP56 is the module and cage/connector system based on current OSFP, targeting to support the 56Gb/s per lane speed in a 8x lane OSFP system and to enable the OSFP 400G interconnect ecosystem. This will greatly help the legacy OSFP users upgrade the link bandwidth to 400G per port with lower cost and shorter transition time.


QSFP-DD (quad small form-factor pluggable double density) doubles the density of QSFP interconnects with an eight-lane electrical interface capable of 28 Gbps NRZ or 56 Gbps PAM-4 to achieve 200 or 400 Gbps aggregate per port. The QSFP-DD portfolio's backwards compatibility allows existing QSFP modules to be plugged into QSFP-DD ports, provide low loss, less skew and better NEXT. providing superior thermal and signal integrity performance.

Wiring Diagram

P1				P2	
GND	1		23	GND	
TX2+	2	>	22	RX2+	
TX2-	3	>	21	RX2-	
GND	4	I	20	GND	
TX4+	5	>	25	RX4+	
TX4-	6	>	24	RX4-	
GND	7		61	GND	
TX6+	8	>	60	RX6+	
TX6-	9	>	59	RX6-	
GND	10		58	GND	
TX8+	11	>	61	RX8+	
TX8-	12	>	62	RX8-	
GND	13		63	GND	
GND	18		73	GND	
RX7-	19	<	72	TX7-	
RX7+	20	<	71	TX7+	
GND	21		70	GND	
RX5-	22	<	75	TX5-	
RX5+	23	<	74	TX5+	
GND	24		73	GND	
RX3-	25	<	34	TX3-	
RX3+	26	<	33	TX3+	
GND	27		32	GND	
RX1-	28	<	37	TX1-	
RX1+	29	<	36	TX1+	
GND	30		35	GND	


P1				P2	
GND	31		4	GND	
RX2+	32	<	3	TX2+	
RX2-	33	<	2	TX2-	
GND	34		1	GND	
RX4+	35	<	6	TX4+	
RX4-	36	<	5	TX4-	
GND	37		4	GND	
RX6+	38	<	41	TX6+	
RX6-	39	<	40	TX6-	
GND	40		39	GND	
RX8+	41	<	44	TX8+	
RX8-	42	<	43	TX8-	
GND	43		42	GND	
GND	48		54	GND	
TX7-	49	>	53	RX7-	
TX7+	50	>	52	RX7+	
GND	51		51	GND	
TX5-	52	>	56	RX5-	
TX5+	53	>	55	RX5+	
GND	54		54	GND	
TX3-	55	>	15	RX3-	
TX3+	56	>	14	RX3+	
GND	57		13	GND	
TX1-	58	>	18	RX1-	
TX1+	59	>	17	RX 1 +	
GND	60		16	GND	


PIN OUT

OSFP PIN OUT

Top PCB viewed from top

Electrical Performance

Signal Integrity

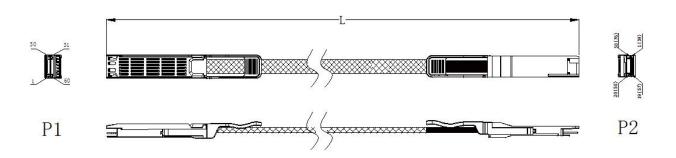
r	TEM	REQUIREMENT	TEST CONDITION		
Differenti	Cable Impedance	$100\pm5\Omega$			
al					
Impedan ce	Cable Termination Impedance	100+10/-15Ω			
Differential (Input/Outp loss S _{DD11} /s	out)Return	$\begin{array}{c c} \text{Return_loss}(f) \geq \left\{ \begin{array}{ccc} 16.5 \text{-} 2\sqrt{f} & 0.05 \leqslant f < 4.1 \\ 10.66 \text{-} 14 \log_{10}(f/5.5) & 4.1 \leqslant f \leqslant 19 \end{array} \right\} \\ \text{Where} \\ \text{f} & \text{is the frequency in GHz} \\ \text{Return loss}(f) & \text{is the return loss at frequency f} \end{array} $	10MHz≤f ≤26.5GHz		
Differential common-m (Input/Outp	node	$\operatorname{Return_loss}(f) \geq \left\{ \begin{array}{c} 22 - 10(f/25.78) & 0.05 \leq f < 12.89 \\ 15 - (6/25.78)f & 12.89 \leq f \leq 19 \end{array} \right\}$	50MHz≤f ≤26.5GHz		

loss S _{CD11} /S _{CD22]}	Where		
	f is the frequency in GHz		
	Return_loss(f) is the Differential to common-mode return		
	loss at frequency f		
Common-mode to	<i>Return_loss(f)</i> ≥2dB 0.05≤f≤19		
Common-mode	Where		
(Input/Output)Return	f is the frequency in GHz	50MHz≪f ≪26.5GHz	
loss S _{CC11} /S _{CC22]}	Return_loss(f) is the common-mode to common-mode		
	return loss at frequency f		
	(Differential InsertionLoss Max. For TPa to TPb		
	Excluding Test fixture)		
Differential Insertion			
Loss (S _{DD21} Max.)	Insertion _loss(f)≥-17.16dB 0.05≤f≤13.28GHz	50MHz≤f ≤26.5GHz	
	Where f is the frequency in CHZ		
	Where f is the frequency in GHz Insertion Loss (f) Differential Insertion Loss at frequency f		
		50MHz≤f ≤	
Insertion Loss Deviation	-0.176*f - 0.7 < ILD < 0.176* f + 0.7	26.56GHz	
		20.0000112	
Differential to	Conversion $\log_{f}(f) = _{f}(f) \ge \int_{10}^{10} 0.05 \le f < 12.89$		
common-mode	Conversion $loss(f) - IL(f) \ge \begin{cases} 10 & 0.05 \le f < 12.89 \\ 14-0.3108f & 12.89 \le f < 26.5 \end{cases}$		
Conversion	Where		
Loss-Differential	f is the frequency in GHz	50MHz≪f ≪26.5GHz	
Insertion	Conversion loss(f) is the cable assembly differential to		
Loss(S _{CD21} -S _{DD21})	common-mode conversion loss		
	IL(f) is the cable assembly insertion loss		
[MDNEXT(multiple	· · · · · · · · · · · · · · · · · · ·		
disturber	≥35dB @26.5GHz	10MHz≪f ≪26.5GHz	
near-end crosstalk)			
Intra Skew	10ps/m,	10MHz≪f ≪19GHz	

Other Electrical Performance

ITEM	REQUIREMENT	TEST CONDITON	
Low Level Contact Resistance	70milliohms Max. From initial.	EIA-364-23:Apply a maximum voltage of 20mV And a current of 100 mA.	
Insulation Resistance	10Mohm(Min.)	EIA364-21:AC 300V 1minute	
Dielectric Withstanding Voltage	NO disruptive discharge.	EIA-364-20:Apply a voltage of 300 VDC for 1minute between adjacent terminals And between adjacent terminals and ground.	

Environment Performance

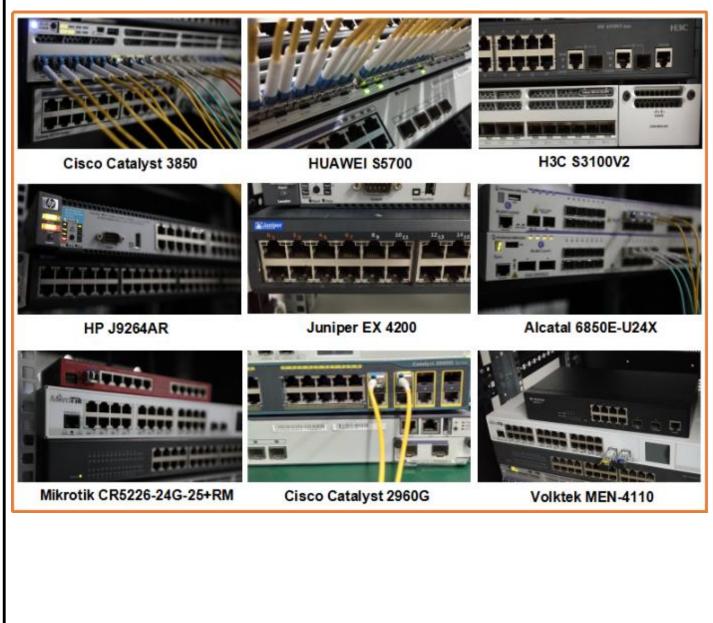

ITEM	REQUIREMENT	TEST CONDITON	
Operating Temp. Range	0°C to +70°C	Cable operating temperature range.	
Storage Temp. Range	-40°C to +80°C	Cable storage temperature range	
(in packed condition)	-40 C 10 +80 C	in packed condition.	
Thermal Cycling	No evidence of physical damage	EIA-364-32D, Method A, -25 to 90C, 100	
Non-Powered		cycles, 15 min. dwells	
Salt Spraying	48 hours salt spraying after shell	EIA-364-26	
Sait Spraying	corrosive area less than 5%.	LIA-304-20	
Mixed Flowing Gas	Pass electrical tests per 3.1 after	EIA-364-35 Class II,14 days.	
	stressing. (For connector only)	LIA-004-00 Class II, 14 days.	
Temp. Life	No evidence of physical damage	EIA-364-17C w/ RH, Damp heat 90°C at 85%	
	No evidence of physical damage	RH for 500 hours then return to ambient	
Cable Cold Bend	4H,No evidence of physical	Condition: -20°C±2°C, mandrel diameter	
	damage	is 6 times the cable diameter.	

Mechanical and Physical Characteristics

ITEM	REQUIREMENT	TEST CONDITON
Vibration	Pass electrical tests per 3.1 after stressing.	Clamp & vibrate per EIA-364-28E, TC-VII, test condition letter – D, 15 minutes in X, Y & Z axis.
Cable Flex	No evidence of physical damage	Flex cable 180° for 20 cycles (±90° from nominal position) at 12 cycles per minute with a 1.0kg load applied to the cable jacket. Flex in the boot area 90° in each direction from vertical. Per EIA-364-41C
Cable Plug Retention in Cage	125 N Min. (OSFP) No evidence of physical damage 90N Min. (QSFP DD) No evidence of physical damage	No functional damage to module, connector, or cage with latching mechanism activated. Per OSFP _Specification_Rev5_0 5.0 Pull on cable jacket approximately 1 ft behind cable plug. No functional damage to cable plug below 90N. Per QSFP-DD Hardware Rev 5.1
Cable Retention in Plug	90N Min. No evidence of physical damage	Cable plug is fixtured with the bulk cable hanging vertically. A 90N axial load is applied (gradually) to the cable jacket and held for 1 minute. Per EIA-364-38B
Mechanical Shock	Pass electrical tests	Clamp and shock,3 times in 6 directions, 100g,

	Per 3.1 after stressing.	6ms. per EIA-364-27B, TC-G	
		Per OSFP _Specification_Rev5_0 5.0	
	OSFPmodule :40N Max.(55N) QSFP-DDmodule:90N Max	Module to be inserted into connector and cage with	
Cable Plug Insertion		latch mechanism engaged.	
		(55N if the cage has riding heatsink)	
		Per QSFP-DD Hardware Rev 5.1	
		Module to be removed from connector and cage	
		with latching mechanism disengaged.	
		(45N if the cage has riding heatsink)	
Coble plug Extraction	OSFPmodule :30N Max. (45N)	Per OSFP _Specification_Rev5_0 5.0	
Cable plug Extraction	QSFP-DDmodule:50N Max.	Place axial load on de-latch to de-latch plug,	
		Measure without the aid of any cage kick-out	
		springs. Place axial load on de-latch to de-latch	
		plug. Per QSFP-DD Hardware Rev 5.1	
		Number of cycles for an individual module, to be	
		tested with cage, connector, and module; latches	
Durability		may be locked out during testing	
	Module:50 cycles,	Per OSFP _Specification_Rev5_0 5.0,	
	No evidence of physical damage	perform plug &unplug cycles:Plug and receptacle	
		mate rate: 250times/hour. 50times for QSFP-DD	
		module (CONNECTOR TO PCB)	
		Per EIA-364-09,	

Outline drawing



PN	Data Rate	Length	Wire Gauge	Temp.Range
EOQDDP40X-330CN0	400G	0.5M	30AWG	0-70°C
EOQDDP40X-330CN1	400G	1M	30AWG	0-70°C
EOQDDP40X-330CN1.5	400G	1.5M	30AWG	0-70°C
EOQDDP40X-328CN2	400G	2M	28AWG	0-70°C
EOQDDP40X-327CN3	400G	3M	27AWG	0-70°C

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Packaging Both ends of the connector use protective sleeve protection, each into a separate anti - static bag. <=2m: 200mm*300mm >2m: 300mm*400mm 300mm 350mm Company: ETU-Link Technology Co., LTD Address: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street, Longhua District, Shenzhen city, GuangDongProvince, China Tel: +86-755 2328 4603 Addresses and phone number also have been listed at www.etulinktechnology.com.

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.

Fiber Optic Transceivers Copyright 2011—2017 etulinktechnology.com All Rights Reserved