

EQ2S2X-CVR

QSFP28 to SFP28 Adapter (QSA) Module

Features

- > Trouble-free installation and network bring-up
- Compliant to industry standards: SFF-8665
- Compliant to industry standards: SFF-8432
- > Precision process control for minimization of pair-to-pair skew
- > 1 independent duplex channels operating at 25Gbps, also support for 10Gbps, 5Gbps data rates
- All-metal housing for superior EMI performance
- > 100ohm differential impedance system
- ➢ Operating case temperature: -20 to 85℃
- Low insertion loss
- Low crosstalk
- Secure latching mechanism
- RoHS compliant
- Compatible with RoHS
- Single +3.3V power supply

Applications

- Low EMI radiation Switches, servers and routers
- > Telecommunication and wireless infrastructure
- > Test and measurement equipment
- Networked storage systems
- Data Center networks
- Storage area networks

Product Description

The QSFP28 to SFP28 Adapter (QSA) Module offers 25 Gigabit Ethernet connectivityfor Quad Small Form-Factor Pluggable (QSFP28)-only platforms. It allows smooth and cost- effective migration to 100 Gigabit Ethernet by providing an option to use lower-speed Enhanced Small Form-Factor Pluggable (SFP28) modules in empty QSFP28 ports or when the other end of the network is running at lower speeds. The QSA Module interoperates with all major optical modules and direct attached copper cable vendors. Its design assures minimum loss on the conversion path between the QSFP28 cage and the SFP28 receptacle. The high-speed data channel of the SFP28 receptacle is connected to lane 1 of the QSFP28 connector. The three remaining channels on the QSFP28 connector are not connected. With this adapter, customers have the flexibility to use any SFP28 module or cable to connect to a lower-speed port on the other end of the network. This flexibility allows a cost-effective transition to 100 Gigabit Ethernet by maximizing the use of high-density 100 Gigabit Ethernet QSFP28 platforms. This adapter supports all SFP28 optics and cable reaches. Compatible switch models and SFP28 modules.A list of SFP28 modules that can be plugged into the QSA module is provided in Table 1

TheQSFP28 to SFP28 Adapter is qualified for 10GbE SFP+ and 1GbE SFP transceivers meeting the Small Form Factor Pluggable (SFP) Transceiver Multi-source Agreement (MSA). The QSA module provides a solution for integrating systems using different vendors 'equipment, is vendor agnostic and provides a direct path to the SFP port unit's memory.

Table 1.

Item	Product Name	Product Description
1	SFP28-SR	25GBASE-SR SFP28 Module for Multimode Fiber
2	SFP28-LR	25GBASE-LR SFP28 Module for Single-Mode Fiber
3	SFP28 Passive Copper Cable	SFP28 Copper Cables (1-m to 5-m lengths)
4	SFP28 Active Optical Cable	SFP28 AOC Optical Cables

Recommended Operation Condition

Parameter	Symbol	Min	Мах	Unit
Operating Case Temperature	Торс	-20	85	degC
Storage Temperature	Tst	-40	85	degC
Relative Humidity (non-condensation)	RS	-	85	%
Supply Voltage	VCC3	3.15	3.45	V
Power consumption	Pout		0.3	W
Characteristic Impedance	lm	90	110	Ohm
Data Rate		1	25	Gbps

QSFP28 Host board Connector Pinout

Figure 1: MSA compliant Connector 38 GND GND 37 TX1n TX2n 36 35 34 33 32 31 30 ТХ1р ТХ2р GND GND TX3n TX4n ТХ3р TX4p GND GND Card LPMode ModSelL Vcc1 ResetL 29 VccTx VccRx Edge 28 27 26 IntL SCL ModPrsL SDA GND GND 25 24 23 22 21 20 RX4p RX3p RX4n GND RX3n GND RX2p RX1p RX2n RX1n GND GND

Top Side Viewed from Top Bottom Side Viewed from Bottom

Figure 2: Pin Definitions

Pin	Logic	Symbol	Name/Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
unuu etulialite ele au espe			2/6 aalaa@atulinktaahnalagu aa	m

www.etulinktechnology.com

3/6

12345678

9 10

11 12

13

14

15

16

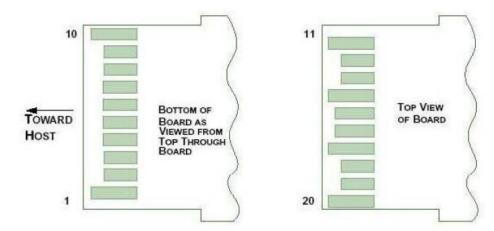
17

18

19

7		GND	Ground	1	
8	LVTLL-I	ModSelL	Module Select		
9	LVTLL-I	ResetL	Module Reset		
10		VccRx	+ 3.3V Power Supply Receiver		
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock		
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data		
13		GND	Ground		
14	CML-O	Rx3p	Receiver Non-Inverted Data Output		
15	CML-O	Rx3n	Receiver Inverted Data Output		
16		GND	Ground	1	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output		
18	CML-O	Rx1n	Receiver Inverted Data Output		
19		GND	Ground	1	
20		GND	Ground	1	
21	CML-O	Rx2n	Receiver Inverted Data Output	t	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output		
23		GND	Ground	1	
24	CML-O	Rx4n	Receiver Inverted Data Output	1	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	a Output	
26		GND	Ground		
27	LVTTL-O	ModPrsL	Module Present		
28	LVTTL-O	IntL	Interrupt		
29		VccTx	+3.3 V Power Supply transmitter		
30		Vcc1	+3.3 V Power Supply		
31	LVTTL-I	LPMode	Low Power Mode	-	
32		GND	Ground	1	
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input		
34	CML-I	Tx3n	Transmitter Inverted Data Output		
35		GND	Ground	1	
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input		
37	CML-I	Tx1n	Transmitter Inverted Data Output		
38		GND	Ground	1	

Note:

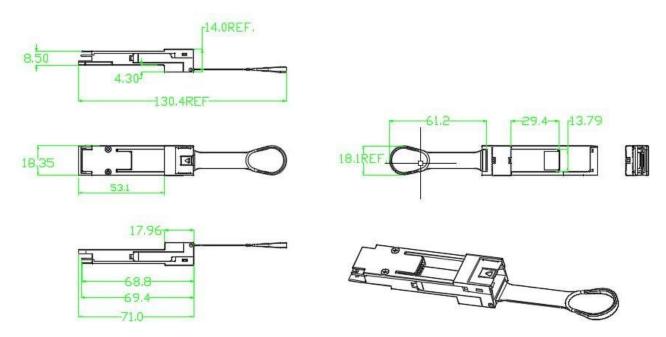

1. GND is the symbol for signal and supply (power) common for QSFP modules. All are common within the QSFP module and all module voltages are referenced to this potential otherwise noted. Connect these directly to the host board signal common ground plane

2. cc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

SFP28 Host board Connector Pinout

Figure 3: MSA compliant Connector

Figure 4: Pin Definitions


Pin	Logic	Symbol	Name/Description	Note	
1		VeeT	Module Transmitter Ground	1	
2	LVTTL-O	Tx_Fault	Transmitter Fault	2	
3	LVTTL-I	Tx_Disable	Transmitter Disable	3	
4	LVTTL-I/O	SDA	MOD-DEF2 2-wire serial interface data line	4	
5	LVTTL-I/O	SCL	MOD-DEF1 2-wire serial interface clock line	4	
6		Mod_Abs	Module Absent	5	
7	LVTTL-I	RS0	Rate Select Zero		
8	LVTTL- O	Rx_LOS	Module Receiver Loss of Signal	2	
9	LVTTL-I	RS1	Rate Select One		
10		VeeR	Module Receiver Ground	1	
11		VeeR	Module Receiver Ground	1	
12	CML-O	RD-	Receiver Inverted Data Output		
13	CML-O	RD+	Receiver Non-Inverted Data Output		
14		VeeR	Module Receiver Ground		
15		VccR	Module Receiver 3.3V Supply		
16		VccT	Module Transmitter 3.3V Supply		
17		VeeT	Module Transmitter Ground	1	
18	CML-I	TD+	Transmitter Non-Inverted Data Input		
19	CML-I	TD-	Transmitter Inverted Data Input		
20		VeeT	Module Transmitter Ground	1	

Notes:

- 1. The module signal grounds, VeeR and VeeT, shall be isolated from the module case.
- 2. This is an open collector/drain output and shall be pulled up with 4.7-10k to Vcc_Host on the host board. Pull ups can be connected to multiple power supplies, however the host board design shall ensure that no module has voltage exceeding module VccT/R + 0.5 V.
- 3. This is an open collector/drain input and shall be pulled up with 4.7-10k to VccT in the module.
- 4. See 2-wire electrical specifications.
- 5. This shall be pulled up with 4.7-10k to Vcc_Host on the host board.

Mechanical Dimensions

Physical Specifications

Maximum physical dimensions (H x W x D)	13.5 x 18.4 x 78 mm
Weight	Typically, less than 100 g